Overall_architecture_transaction.png

The Metacapacitors project aims to improve efficiency, functionality and form factor of offline power converters suitable for LED solid-state lighting, with a view to developing an attractive technology platform for load management and power conversion across a broad range of applications. Based on integrated switched-capacitor (SC) topologies, the project adopts an integrated approach from materials to devices to circuits. We designed capacitors based on high-k dielectric nanocrystals, that can be prepared using high-throughput microfabrication nanotechnology techniques, ink deposition and multilayering. The capacitor dielectric, a nanocomposite composed of (Ba, Sr)TiO3 nanocrystals in polyfurfuryl alcohol (BST/PFA, κ > 20, 100Hz–1 MHz, loss < 0.01, 20 kHz), targets a high volumetric capacitance density and ripple current capability. The dielectric is demonstrated to function in a finished capacitor >1000 h at 125◦C. The capacitors were board integrated with a custom hybrid-switched-capacitor-resonant dc–dc converter IC. The converter integrates a balanced SC front-end with a series resonant tank, enabling nearly lossless current regulation and tranformerless galvanic isolation. The converter IC can be stacked in the voltage domain to interface a range of inputs. The tested driver delivers about 15 Wat 470 mA to a string of 12 LEDs with 90% peak efficiency.

The project followed a University consortium model. O'Brien was the project manager, collaborating with Professor Dan Steingart (Princeton), Professor Ioannis (John) Kymissis (Columbia University), Professor Peter Kinget (Columbia University), Professor Alex Couzis (The City College of New York), Professor Seth Sanders (UC Berkeley).

The project was mainly sponsored by the Advanced Research Projects Agency - energy, ARPA-e , under the ADEPT Program. Support was also provided by NYSERDA, the New York State Energy Research Development Authority, Con-Edison, the National Science Foundation and the City University of New York.

Related publications

  1. Pearsall, F. A.; Lombardi, J.; Farahmand, N.; Tassel, B.; Leland, E. S.; Huang,  L.; Liu, S.; Yang, S.; Le, C.; Kymissis, I.; Kinget, P.; Sanders, S. R.; Steingart, D.; O’Brien, S. “Polymer-Nanocrystal Nanocomposites: Device Concepts in Capacitors and Multiferroics” IEEE Transactions on Nanotechnology, 2019, 10.1109/TNANO.2019.2939093. Link

  2. Leland, E. S.; Kinget, P. R.; Kymissis, I.; Steingart, D.; Sanders, S. R.; O’Brien, S. “Nanocomposite Capacitors in Power Electronics and Multiferroics” IEEE Nanotechnology Magazine, 2018, 10.1109/MNANO.2018.2881331. Link

  3. Lombardi, J.; Pearsall, F. A.; Farahmand, N.; van Tassel B.; Leland E. S.; Huang, L.; Liu, S.; Yang, S.; Le, C.; Kymissis, I.; Kinget, P.; Sanders, S. R.; Steingart, D.; O'Brien, S. “Polymer-Nanocrystal Nanocomposite Capacitors and Their Applications in Energy Storage”, 2018 IEEE 13th Nanotechnology Materials and Devices Conference (NMDC), pp. 1-4, 2018. Link

  4. Pearsall, F., A.; Lombardi, J.; O’Brien, S. “Monomer Derived Poly(Furfuryl)/BaTiO3 0–3 Nanocomposite Capacitors: Maximization of the Effective Permittivity Through Control at the Interface.” ACS Applied Materials & Interfaces, 2017 9 (46), 40324-40332. DOI: 10.1021/acsami.7b13879. Link

  5. Van Tassell, B.; Yang, S.; Le, C.; Liu, S.; Huang, L.; Chando, P.; Liu, X.; Byro, A.; Gerber, D.; Leland, E.; Sanders, S.; Kinget, P.; Kymissis, I.; Steingart, D.; O’Brien, S. “Metacapacitors: Printed thin-film, flexible capacitors for power conversion applications,” Power Electronics, IEEE Transactions on. 2016, 31, 4, 2695 – 2708. DOI: 10.1109/TPEL.2015.2448529. Link

  6. Hao, Y. N.; Wang, X. H.; O'Brien, S; Lombardi, J.; Li, L. T. “Flexible BaTiO3/PVDF gradated multilayer nanocomposite film with enhanced dielectric strength and high energy density” J. Mater. Chem. C, 2015, 3, 9740-9747. DOI: 10.1039/C5TC01903F. Link

  7. Liu, S.; Huang, L.; Wanlu Li, W.; Xiaohua Liu, W.; Shui, J.; Li, J. and O'Brien, S. Green and scalable production of colloidal perovskite nanocrystals and transparent sols by a controlled self-collection process”, Nanoscale, 2015, 7, 11766. DOI: 10.1039/c5nr02351c. Link

  8. Hossain, M. E.; Liu, S. Y.; O’Brien, S.; Li, J. “Modeling of high-k dielectric nanocomposites”, Acta Mech, 2014, 225, 1197-1209, doi:10.1007/s00707-013-1607-z. Link

  9. Huang, L.; Liu, S.; van Tassel, B.; Liu, X.; Byro, A.; Zhang, H.; Akins; D. L.; Steingart, D. A.; Li, J.; O’Brien, S. “Structure and Performance of Dielectric Films based on Self-Assembled High Dielectric Constant Nanocrystals”, Nanotechnology, 2013, 24, 415602 doi:10.1088/0957-4484/24/41/415602. Link

  10. Liu, X.; Liu, S.; Han, M.-G.; Zhao, L.; Deng, H.; Li, J.; Zhu, Y.; Krusin-Elbaum, L.; O’Brien, S. “Magnetoelectricity in CoFe2O4 Nanocrystal-P(VDF-HFP) Thin-Films”, Nanoscale Research Letters, 2013, 8, 374. Link

  11. Yang, S.Y.; Kymissis, I.; Leland, E.S.; Liu, S.Y.; O'Brien, S. “Influence of electromigration on the maximum operating field of (Ba,Sr)TiO3/parylene-C composite capacitors” Journal of Vacuum Science and Technology B. 2013, 31, 6. doi:10.1116/1.4828365. Link

  12. Liu, S.; L.; Huang, L.; Li, J.; O’Brien, S., “Intrinsic dielectric frequency dependent spectrum of a single domain tetragonal BaTiO3” Journal of Applied Physics 112, 014108, 2012, http://dx.doi.org/10.1063/1.4734004. Link

  13. Liu, S.; Zhang, H.; Lev Sviridov, L.; Huang, L.; Xiaohua Liu, X.; Jacopo Samson, J.; Akins, D. L.; Li, J.; O’Brien, S. “Comprehensive Dielectric Performance of Bismuth Acceptor Doped BaTiO3 Based Nanocrystal Thin Film Capacitors” Journal of Materials Chemistry, 2012, 22, 21862-21870, DOI: 10.1039/C2JM34044E. Link

  14. Yang, S.; Tull, B. R.; Pervez, N. K.; Huang, L.; Leland, E. S.; Steigart, D. A.; O'Brien, S.; Kymissis, I. “Asymmetric Leakage in (Ba, Sr)TiO3 Nanoparticle/Parylene-C Composite Capacitors”, Journal of Polymer Science B: Polymer Physics, 2012 DOI: 10.1002/polb.23156. Link